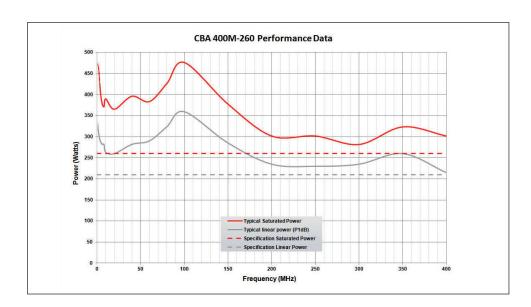


CBA 400M-260 10 kHz TO 400 MHz 260 WATT CLASS A BROADBAND AMPLIFIER



- Class A linear and low distortion design
- High reliability gallium arsenide technology
- Mismatch tolerant and unconditionally stable
- Wide instantaneous bandwidth
- Remote control option
- Three year parts and labour warranty

Designed specifically for automotive, military and aerospace BCI and other susceptibility EMC testing, this mismatch tolerant Class A amplifier delivers power continuously into the varying match typically associated with this type of testing.

The GaAs Class A push pull design ensures a high reliability, low distortion linear performance across the frequency range. This design also ensures that the amplifier will continue to operate at full power even when presented with an open or short circuit at its output.

The unit is powered from a switched mode power supply for high efficiency, high power factor and wide voltage range operation. The unit is air-cooled with integral fans, and is protected against faulty cooling by excess temperature sensing. For added flexibility, two safety interlock BNC connectors are provided on the rear panel which allows either short circuit or open circuit to mute the output from the amplifier. Front panel indicators are provided to indicate over-temperature and rf interlock operation.

CBA 400M-260 10 kHz TO 400 MHz 260 WATT CLASS A BROADBAND AMPLIFIER

Key RF Parameters

Frequency range (instantaneous)	10 kHz to 400 MHz
Rated output power	260 W minimum (>300 W typical)
Output power at 1 dB gain compression	210 W minimum (>240 W typical)
Harmonics at 210 W output power	Better than -20 dBc
Gain (nominal)	54 dB
Gain variation with frequency	±3 dB
Maximum input power (no damage)	+10 dBm

Impedance/VSWR

Output VSWR tolerance 1	Infinity:1
Stability	Unconditional
Output impedance	50 Ohms
Input VSWR	2:1

Additional RF Data

Third order intercept point ²	64 dBm
RF connector style	Type N female

Electrical and Interfaces

USB interface	Optional
Dual safety interlock	Two BNC female connectors S/C to mute and O/C
	to mute
Supply voltage	100 to 264 VAC
Supply frequency range	45 to 63 Hz
Supply power	<2 kVA

Physical/Environmental

Case dimensions	19 inch, 6U case, 440 mm deep
Weight	30 kg
Operating temperature range	0 to 40°C

Teseq AG

Nordstrasse 11F 4542 Luterbach Switzerland T +41 32 681 40 40 F +41 32 681 40 48 sales@teseq.com www.teseq.com

© September 2013 Teseq®

Specifications subject to change without notice. Teseq® is an ISO-registered company. Its products are designed and manufactured under the strict quality and environmental requirements of the ISO 9001. This document has been carefully checked. However, Teseq® does not assume any liability for errors or inaccuracies.

Notes:

- 1. Output VSWR tolerance is specified for excitation within the permitted levels and frequency range.
- 2. The third order intercept point is a nominal value, as its calculation depends upon the power level at which distortion measurements are made.

